Vertex-critical graphs in co-gem-free graphs

Ben Cameron (he/him)

University of Prince Edward Island

brcameron@upei.ca (Joint work with Iain Beaton)

CMS Winter Meeting 2024 Richmond, B.C.

December 1, 2024

Definitions

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet).$$

- Colouring here means proper colouring (adjacent vertices get different colours).
- A graph is *H*-free if it does not contain *H* as an induced subgraph.
 is *P*₅-free but not *P*₄-free.

 $\underset{00000000}{\operatorname{Critical Graphs}}$

(co-gem, H)-free 00000

Conclusion 00

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-COLOURING can be solved in polynomial-time for H-free graphs, then every component of H must be a path.

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-COLOURING can be solved in polynomial-time for H-free graphs, then every component of H must be a path.
- It remains NP-complete when restricted to P_6 -free graphs for all $k \geq 5$ (Huang 2016).

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k

Critical Graphs

(co-gem, H)-free 00000

Conclusion 00

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-colouring if one exists.

• A k-colouring is a certificate to verify a "yes".

Critical Graphs

(co-gem, H)-free 00000

Conclusion 00

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-colouring if one exists.

- A k-colouring is a certificate to verify a "yes".
- How can we verify a "no"?

k-COLOURING Critical Graphs (co-gem, H)-free Conclusion ⊙OO ●OOOOOOO OO OO OO

• A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.

k-Colouring	Critical Graphs	(co-gem, H)-free	Conclusion
000	●0000000	00000	00

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

k-Colouring	Critical Graphs	(co-gem, H)-free	Conclusion
	●0000000	00000	00

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

k-Colouring	Critical Graphs	(co-gem, H)-free	Conclusion
	●0000000	00000	00

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

Issue: For $k \ge 3$ there are infinitely many k-critical graphs.

(co-gem, H)-free 00000

(co-gem, H)-free 00000

(co-gem, H)-free 00000

Conclusion 00

Theorem (Hoàng et al. 2015): If H contains an induced $2P_2$, then there is an infinite number of k-critical H-free graphs for all $k \geq 5$. In particular, there is an infinite number of P_t -free k-critical graphs for all $k, t \geq 5$.

Theorem (Hoàng et al. 2015): If H contains an induced $2P_2$, then there is an infinite number of k-critical H-free graphs for all $k \geq 5$. In particular, there is an infinite number of P_t -free k-critical graphs for all $k, t \geq 5$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an induced claw, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (Hoàng et al. 2015): If H contains an induced $2P_2$, then there is an infinite number of k-critical H-free graphs for all $k \geq 5$. In particular, there is an infinite number of P_t -free k-critical graphs for all $k, t \geq 5$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an induced claw, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (e.g. Erdős 1959): If H contains an induced cycle, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

- ℓP_1
- $P_2 + \ell P_1$
- $P_3 + \ell P_1$
- $P_4 + \ell P_1$

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

Question 1 only open if H is one of:

• ℓP_1

Finite (Ramsey's Theorem)

- $P_2 + \ell P_1$
- $P_3 + \ell P_1$
- $P_4 + \ell P_1$

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

- ℓP_1 Finite (Ramsey's Theorem)
- $P_2 + \ell P_1$ Finite (C.-Hoàng-Sawada 2022)
- $P_3 + \ell P_1$
- $P_4 + \ell P_1$

• $P_4 + \ell P_1$

Question 1: For which H are there only finitely many k-critical H-free graphs for all k?

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

• ℓP_1	Finite (Ramsey's Theorem)
• $P_2 + \ell P_1$	Finite (CHoàng-Sawada 2022)
• $P_3 + \ell P_1$	Finite (Abuadas-CHoàng-Sawada 2024)

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

• ℓP_1	Finite (Ramsey's Theorem)
• $P_2 + \ell P_1$	Finite (CHoàng-Sawada 2022)
• $P_3 + \ell P_1$	Finite (Abuadas-CHoàng-Sawada 2024)
• $P_4 + \ell P_1$???

Thus, Question 1: can be reduced to the wide-open:

Question 2: For which values of ℓ are there only finitely many *k*-critical $(P_4 + \ell P_1)$ -free graphs for all *k*? Thus, Question 1: can be reduced to the wide-open:

Question 2: For which values of ℓ are there only finitely many k-critical $(P_4 + \ell P_1)$ -free graphs for all k?

A starting place:

Question 3: Are there only finitely many k-critical co-gem-free graphs for all k?

Figure: The graphs gem (left) and co-gem= $P_4 + P_1$ (right).

Thus, Question 1: can be reduced to the wide-open:

Question 2: For which values of ℓ are there only finitely many *k*-critical $(P_4 + \ell P_1)$ -free graphs for all *k*?

A starting place:

Question 3: Are there only finitely many k-critical co-gem-free graphs for all k?

Figure: The graphs gem (left) and co-gem= $P_4 + P_1$ (right). A starting place for the starting place, $\ell = 1$:

Question 4: For which graphs H are there only finitely many k-critical (co-gem, H)-free graphs for all k?

Is a starting place for the starting place justified?

(co-gem, H)-free 00000

Is a starting place for the starting place justified?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H of order 4 and $k \geq 5$, there are only finitely many k-critical (P_5, H) -free graphs if and only if H is **NOT** $2P_2$ or $K_3 + P_1$.

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

(co-gem, H)-free 00000

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

- banner $\overline{P_5}$
- $K_{2,3}$ or $K_{1,4}$

• $P_2 + 3P_1$

• $P_3 + 2P_1$

• W₄

- $\overline{P_3 + P_2}$ or gem
- \bullet dart
- $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

(co-gem, H)-free 00000

Conclusion 00

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

- banner (Brause-Geißer-Schiermeyer 2022)
- $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)
- $P_3 + 2P_1$

(Abuadas-C.-Hoàng-Sawada 2024)

• W₄ (Xia-Jooken-Goedgebeur-Huang-Beaton-C. 2024+) • $\overline{P_5}$ (Dhaliwal-Hamel-Hoàng-Maffray-

McConnel-Panait 2017)

• $\overline{P_3 + P_2}$ or gem

(Cai-Goedgebeur-Huang 2023)

- dart (Xia-Jooken-Goedgebeur-Huang 2023)
- $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

(Xia-Jooken-Goedgebeur-Huang 2024)

Recall...

Question 4: For which graphs H are there only finitely many k-critical (co-gem, H)-free graphs for all k?

Recall...

Question 4: For which graphs H are there only finitely many k-critical (co-gem, H)-free graphs for all k?

Only progress until now:

Theorem (Abuadas-C.-Hoàng-Sawada 2024) There are only finitely many k-critical (gem, co-gem)-free graphs for all k.

Recall...

Question 4: For which graphs H are there only finitely many k-critical (co-gem, H)-free graphs for all k?

Only progress until now:

Theorem (Abuadas-C.-Hoàng-Sawada 2024) There are only finitely many k-critical (gem, co-gem)-free graphs for all k.

Main Result

Theorem (Beaton-C. 2024+) There are only finitely many k-critical (co-gem, H)-free graphs for all k and all H of order 4.

Figure: All 11 nonisomorphic graphs of order four.

Figure: All 11 nonisomorphic graphs of order four.

• Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$

- Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$
- Use that G is co-gem-free to find a set U such that $N(s_i) \cap U$ is incomparable with $N(s_j) \cap U$ for all $i \neq j$.

- Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$
- Use that G is co-gem-free to find a set U such that $N(s_i) \cap U$ is incomparable with $N(s_j) \cap U$ for all $i \neq j$.
- By Sperner's Theorem on antichains, $|U| \ge kc$.

- Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$
- Use that G is co-gem-free to find a set U such that $N(s_i) \cap U$ is incomparable with $N(s_j) \cap U$ for all $i \neq j$.
- By Sperner's Theorem on antichains, $|U| \ge kc$.
- Show that if $\alpha(U) > c$, then G has an induced P_5 or $P_3 + cP_2$.

- Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$
- Use that G is co-gem-free to find a set U such that $N(s_i) \cap U$ is incomparable with $N(s_j) \cap U$ for all $i \neq j$.
- By Sperner's Theorem on antichains, $|U| \ge kc$.
- Show that if $\alpha(U) > c$, then G has an induced P_5 or $P_3 + cP_2$.
- But now, $\chi(U) \ge k$, contradicting G being k-critical!

- Suppose G contains an induced $P_3 + {\binom{kc}{\lfloor \frac{kc}{2} \rfloor}}P1.$
- Use that G is co-gem-free to find a set U such that $N(s_i) \cap U$ is incomparable with $N(s_j) \cap U$ for all $i \neq j$.
- By Sperner's Theorem on antichains, $|U| \ge kc$.
- Show that if $\alpha(U) > c$, then G has an induced P_5 or $P_3 + cP_2$.
- But now, $\chi(U) \ge k$, contradicting G being k-critical!
- So, G is $(P_3 + {kc \choose \lfloor \frac{kc}{2} \rfloor} P1)$ -free.

Critical Graphs 00000000 (co-gem, H)-free 00000

Corollary (Beaton-C. 2024): There are only finitely many k-critical (co-gem, $2P_2$)-free graphs for all k.

Corollary (Beaton-C. 2024): There are only finitely many k-critical (co-gem, $K_3 + P_1$)-free graphs for all k.

Computer Proof (Beaton-C. 2024+, thanks to Jan Goedgebeur!): There are no 5-critical (co-gem, K_4)-free graphs.

Corollary (Beaton-C. 2024): (co-gem, K_4)-free graphs are 4-colourable.

Question 2: For which values of ℓ are there only finitely many k-critical $(P_4 + \ell P_1)$ -free graphs for all k?

Question 3: Are there only finitely many k-critical co-gem-free graphs for all k?

Question 4: For which graphs H of order at least 5 are there only finitely many k-critical (co-gem, H)-free graphs for all k?

Critical Graphs 00000000 (co-gem, H)-free 00000

 $\operatorname{Conclusion}_{O \bullet}$

THANK YOU!

Figure: Scan QR code for the arXiv paper. Thanks to NSERC!