Efficient certifying algorithms for k-colouring subfamilies of P_5 -free graphs

Ben Cameron (he/him)

University of Prince Edward Island

brcameron@upei.ca

ISMP 2024 Montréal, Québec.

July 24, 2024

Definitions

- P_n is the path on n vertices $(P_3: \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1 : \bullet).$$

- Colouring here means proper colouring (adjacent vertices get different colours).
- A graph is H-free if it does not contain H as an **induced** subgraph. is P_5 -free but not P_4 -free.

Definition: For fixed k, the k-Colouring decision problem is to determine if a given graph is k-colourable.

Definition: For fixed k, the k-Colouring decision problem is to determine if a given graph is k-colourable.

• k-Colouring is NP-complete for all $k \geq 3$ (Karp 1972).

- k-Colouring is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to H-free graphs if H contains a cycle (Kamiński-Lozin 2007).

- k-Colouring is NP-complete for all $k \geq 3$ (Karp 1972).
- It remains NP-complete when restricted to H-free graphs if H contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to H-free graphs if H contains a claw (Holyer 1981; Leven-Gail 1983).

- k-Colouring is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to H-free graphs if H contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to H-free graphs if H contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-Colouring can be solved in polynomial-time for H-free graphs, then every component of H must be a path.

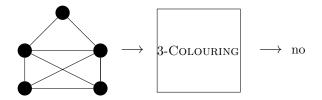
- k-Colouring is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to H-free graphs if H contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to H-free graphs if H contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-Colouring can be solved in polynomial-time for H-free graphs, then every component of H must be a path.
- It remains NP-complete when restricted to P_6 -free graphs for all k > 5 (Huang 2016).

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-colouring if one exists.

• A k-colouring is a certificate to verify a "yes".

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-colouring if one exists.



- A k-colouring is a certificate to verify a "yes".
- How can we verify a "no"?

• A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k+1)-critical induced subgraph of the input graph to certify negative answers to k-Colouring.

Issue: For $k \geq 3$ there are infinitely many k-critical graphs.

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

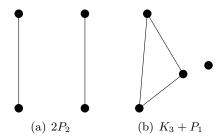
Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H of order 4 and $k \geq 5$, there are only finitely many k-critical (P_5, H) -free graphs if and only if H is **NOT** $2P_2$ or $K_3 + P_1$.



Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of **order 5** are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

banner

• $\overline{P_5}$

• $K_{2,3}$ or $K_{1,4}$

• $\overline{P_3 + P_2}$ or gem

• $P_2 + 3P_1$

• dart

• $P_3 + 2P_1$

• $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of **order 5** are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

- banner (Brause-Geißer-Schiermeyer 2022)
- ullet $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)
- $P_3 + 2P_1$ (Abuadas-C.-Hoàng-Sawada 2024)

- ullet $\overline{P_5}$ (Dhaliwal-Hamel-Hoàng-Maffray-McConnel-Panait 2017)
- $\overline{P_3 + P_2}$ or gem

 (Cai-Goedgebeur-Huang 2023)
- dart (Xia-Jooken-Goedgebeur-Huang 2023)
- $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$ (Xia-Jooken-Goedgebeur-Huang 2024)

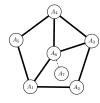
(f) G_6

(g) G_7

(h) G_8

(i) G_9

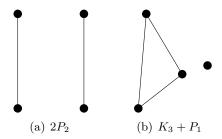
(j) G_{10}



(k) Graphs in H

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical (P_5, H) -free graphs for all $k \geq 5$ if $H = 2P_2$ or $K_3 + P_1$.



G is perfect if and only if no induced subgraph of G is an odd cycle of length at least five or the complement of one.

G is perfect if and only if no induced subgraph of G is an odd cycle of length at least five or the complement of one.

Simple Observations:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

G is perfect if and only if no induced subgraph of G is an odd cycle of length at least five or the complement of one.

Simple Observations:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

Question: How many k-critical (P_5, C_5) -free graphs are there?

G is perfect if and only if no induced subgraph of G is an odd cycle of length at least five or the complement of one.

Simple Observations:

k-Colouring

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all k > 3.

Question: How many k-critical (P_5, C_5) -free graphs are there?

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are only finitely many many 5-critical (P_5, C_5) -free graphs. (In fact, exactly 13)

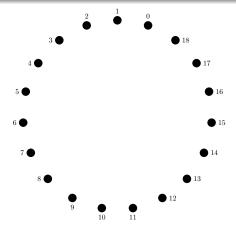


Figure: Constructing and colouring the 7-critical graph G(3,6).

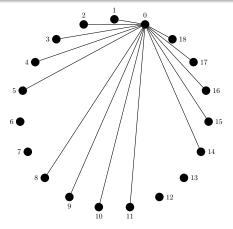


Figure: Constructing and colouring the 7-critical graph G(3,6).

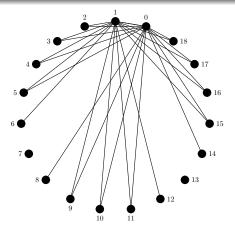


Figure: Constructing and colouring the 7-critical graph G(3,6).

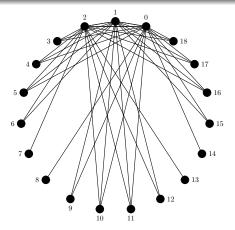


Figure: Constructing and colouring the 7-critical graph G(3,6).

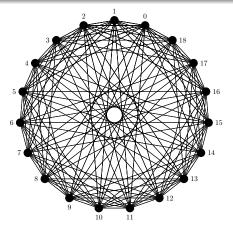


Figure: Constructing and colouring the 7-critical graph G(3,6).

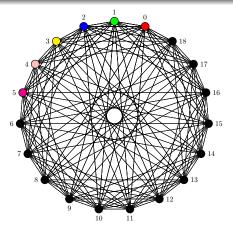


Figure: Constructing and colouring the 7-critical graph G(3,6).

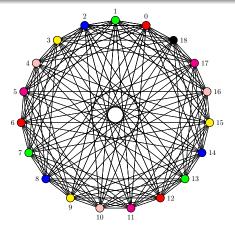


Figure: Constructing and colouring the 7-critical graph G(3,6).

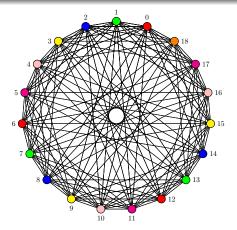


Figure: Constructing and colouring the 7-critical graph G(3,6).

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all k > 5.

They prove this by constructing an infinite family of k-critical $(2P_2, K_3 + P_1)$ -free graphs!

Figure: P_5 with an induced $2P_2$ in red.

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

They prove this by constructing an infinite family of k-critical $(2P_2, K_3 + P_1)$ -free graphs!

Figure: P_5 with an induced $2P_2$ in red.

Theorem (C.-Hoàng 2024): There are infinitely many k-critical ($2P_2$, $K_3 + P_1$, C_5)-free graphs for all $k \ge 6$.

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

They prove this by constructing an infinite family of k-critical $(2P_2, K_3 + P_1)$ -free graphs!

Figure: P_5 with an induced $2P_2$ in red.

Theorem (C.-Hoàng 2024): There are infinitely many k-critical ($2P_2$, $K_3 + P_1$, C_5)-free graphs for all $k \ge 6$.

Fact: Every known infinite family of k-critical P_5 -free graphs is actually $2P_2$ -free!

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

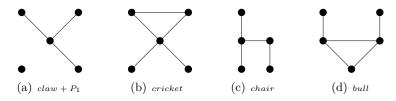


Figure: Graphs of order 5 where the finiteness is unknown.

Figure: The general form of the (m, ℓ) -squid graphs for m = 3, 4.

4.

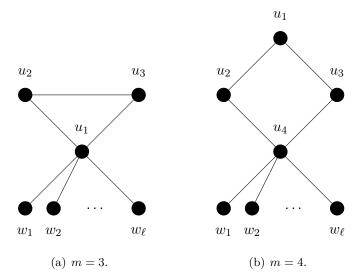
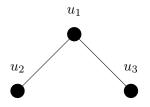
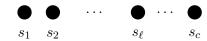
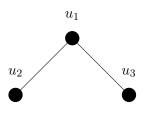
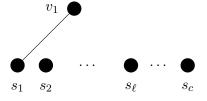


Figure: The general form of the (m, ℓ) -squid graphs for m = 3, 4.



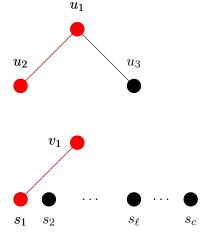




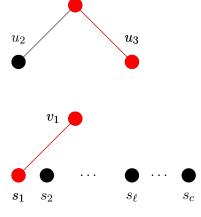


Lemma (Adekanye-Bury-C.-Knodel 2024): Let $\ell, k \geq 1$ and

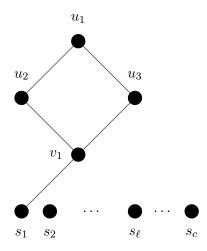
 $c = (\ell - 1)(k - 1) + 1$. If G is a k-critical $(2P_2, (4, \ell)\text{-}squid)$ -free graph, then G is $(P_3 + cP_1)$ -free.

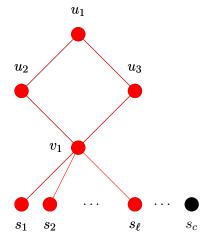


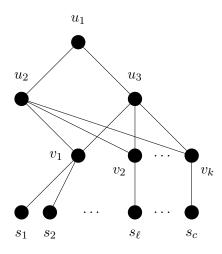
 u_1

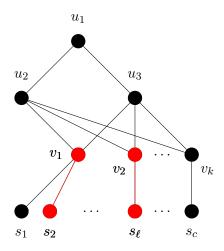


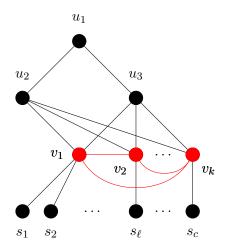
 $(2P_2, H)$ -free











Theorem (Abuadas-C.-Hoàng-Sawada 2024): There are only finitely many k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2 P_2 , (4, ℓ)-squid)-free graphs for all $k, \ell \geq 1$.

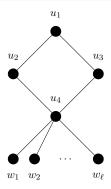


Figure: $(4, \ell)$ -squid contains an induced

Theorem (Abuadas-C.-Hoàng-Sawada 2024): There are only finitely many k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2 P_2 , (4, ℓ)-squid)-free graphs for all $k, \ell \geq 1$.

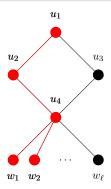


Figure: $(4, \ell)$ -squid contains an induced chair

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2 P_2 , (4, ℓ)-squid)-free graphs for all $k, \ell \geq 1$.

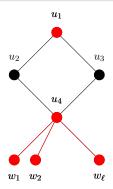
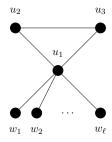
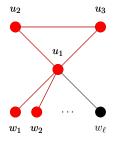


Figure: $(4, \ell)$ -squid contains an induced chair and $claw + P_1$.



Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical $(2P_2,(3,\ell)$ -squid)-free graphs for all $k,\ell \geq 1$.



Corollary (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical cricket-free graphs for all $k \geq 1$.

Lemma (Adekanye-Bury-C.-Knodel 2024): Every k-critical $(2P_2, bull)$ -free graph is $(P_3 + P_1)$ -free.

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2 P_2 , bull)-free graphs for all k.

Figure: The bull graph.

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical ($2P_2, bull$)-free graphs for all k.

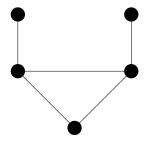


Figure: The bull graph.

n	4-critical	5-critical	6-critical	7-critical
4	1	0	0	0
5	0	1	0	0
6	1	0	1	0
7	2	1	0	1
8	0	2	1	0
9	0	11	2	1
10	0	0	12	2
11	0	0	126	12
12	0	0	0	128
13	0	0	0	3806
total	4	15	142	3947

Table: Number of k-critical $(2P_2, H)$ -free graphs of order n for $k \leq 7$ where H is (4, 1)-squid or bull.

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

- co-gem
- chair (known k = 5)
- cricket

- \bullet $C_4 + P_1$
- bull (known k = 5)
- $\overline{P_3 + 2P_1}$

- W₄
- $K_5 e$ (known k > 8)
- K_5 (known k = 5)

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

• co-gem

• $C_4 + P_1$

• W₄

• chair (known k = 5)

• bull (known k = 5)

• $K_5 - e$ (known k > 8)

• cricket

• $\overline{P_3 + 2P_1}$

• K_5 (known k = 5)

Theorem (Beaton-C. 2024+): There are only finitely many k-critical $(P_5, P_3 + P_2, \text{co-gem})$ -free graphs for all k.

THANK YOU!

