On the finiteness of k-vertex-critical $2P_2$ -free graphs with forbidden induced squids or bulls

Ben Cameron (he/him)

University of Prince Edward Island

brcameron@upei.ca

IWOCA 2024 Ischia, Italy.

July 2, 2024

Figure: 2023 Summer Research Lab, including coauthors. (Joint work with Melvin Adekanye, Christopher Bury, and Thaler Knodel)

k-Colouring	Critical Graphs	Results	Conclusion
	0000000	000000	o
Definitions			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet \bullet).$$

- Colouring here means proper colouring (adjacent vertices get different colours).
- A graph is H-free if it does not contain H as an induced subgraph.
 is P₅-free but not P₄-free.

k-Colouring 0●0	Critical Graphs ooooooo	Results	$_{\circ}^{\rm Conclusion}$

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).

k-Colouring o●o	Critical Graphs 0000000	Results	Conclusion o
Definition.	For fixed k, the k -COL	OURING decision pro	oblem is

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).

k-Co 0●0	LOURING	Critical Graphs 0000000	Results 000000	Concle 0	
	Definition: For fi	xed k , the k -Colouring	decision problem	\mathbf{is}	1

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).

to determine if a given graph is k-colourable.

- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).

e-Co ●●	LOURING	Critical Graphs 0000000	$\underset{000000}{\operatorname{Results}}$	Conclusion o
	Definition:	For fixed k , the k -C	OLOURING decision pro	blem is

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-COLOURING can be solved in polynomial-time for H-free graphs, then every component of H must be a path.

Colouring 0●0	Critical Graphs 0000000	Results 000000	Conclusion o
Definition:	For fixed k , the k -COLO	OURING decision pro	oblem is

- k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).
- So assuming $P \neq NP$, if k-COLOURING can be solved in polynomial-time for H-free graphs, then every component of H must be a path.
- It remains NP-complete when restricted to P_6 -free graphs for all $k \geq 5$ (Huang 2016).

k-Colouri	NG
000	

Critical Graphs

Results 000000

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k

-Colouring ⊙⊙	Critical Graphs 0000000	Results	Conclusion o
Theorem (H	aàng Kamiáski Login Sawada Shu	k-COLOURING	Pr-free

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010) k-COLOURING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-colouring if one exists.

• A k-colouring is a certificate to verify a "yes".

algorithm gives a valid *k*-colouring if one exists.

- A k-colouring is a certificate to verify a "yes".
- How can we verify a "no"?

k-Colouring	Critical Graphs	Results	Conclusion
000	•000000	000000	o

• A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.

k-Colouring	Critical Graphs	Results	Conclusion
000	•000000		o

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

k-Colouring	Critical Graphs	Results	Conclusion
000	•000000	000000	o

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

k-Colouring	Critical Graphs	Results	$\mathop{\rm Conclusion}_{\scriptscriptstyle O}$
000	•000000	000000	

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

Issue: For $k \ge 3$ there are infinitely many k-critical graphs.

k-Colouring	Critical Graphs	Results	Conclusion
000	000000	000000	0

k-Colouring	Critical Graphs	Results	Conclusion
000	o●ooooo	000000	o

<i>k</i> -Colouring	Critical Graphs	Results	$_{\rm o}^{\rm Conclusion}$
000	o●ooooo	000000	

<i>k</i> -Colouring	Critical Graphs	Results	$_{\rm o}^{\rm Conclusion}$
000	o●ooooo	000000	

k-Colouring	Critical Graphs	Results	Conclusion
000	000000		o

<i>k</i> -Colouring	Critical Graphs	Results	$_{\rm o}^{\rm Conclusion}$
000	o●ooooo	000000	

<i>k</i> -Colouring 000	Critical Graphs o●ooooo	Results	$\underset{O}{\operatorname{Conclusion}}$

Colouring	Critical Graphs	Results	Conclusion
0	00●0000	000000	O
Question for all k	on: Are there only finitely ma <i>x</i> ?	ny k -critical P_5 -fr	ree graphs

Colouring	Critical Graphs	Results	Conclusion
Do	00●0000		o
$\frac{\text{Question:}}{\text{for all } k?}$	Are there only finitely ma NO!	any <i>k</i>-critical P₅-fr	ree graphs

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

Figure: One of infinitely many 7-critical P_5 -free graphs.

k-Colouring 000	Critical Graphs	Results	Conclusi
	000€000	000000	o

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

<i>k</i> -Colouring	Critical Graphs	Results	$_{\rm O}^{\rm Conclusion}$
000	000●000	000000	

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H of order 4 and $k \geq 5$, there are infinitely many k-critical (P_5, H) -free graphs if and only if H is $2P_2$ or $K_3 + P_1$.

-Colouring	Critical Graphs	Results	Conclusion
00	0000000	000000	o
Open Problem (K	. Cameron-Goedgebeur-Hu	_{nang-Shi} 2021): For which	ch graphs
H of order 5 ar	e there only finite	y many <i>k</i> -critical	

 (P_5, H) -free graphs for all k?

COLOURINGCritical Graphs
occocicitieResults
coccocicitieConclusionOpen Problem (K. Cameron-Goedgebeur-Huang-Shi 2021):For which graphs
H of order 5 are there only finitely many k-critical
 (P_5, H) -free graphs for all k?Conclusion

Finite if H is any of the graphs below:

- banner $\overline{P_5}$
- $K_{2,3}$ or $K_{1,4}$ $\overline{P_3 + P_2}$ or gem
- $P_2 + 3P_1$
- $P_3 + 2P_1$ $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

- banner (Brause-Geißer-Schiermeyer 2022)
- $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)
- $P_3 + 2P_1$

(Abuadas-C.-Hoàng-Sawada 2024)

- $\overline{P_5}$ (Dhaliwal et al. 2017)
- $\overline{P_3 + P_2}$ or gem

(Cai-Goedgebeur-Huang 2023)

• $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

(Xia-Jooken-Goedgebeur-Huang 2024)

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

Finite if H is any of the graphs below:

- banner (Brause-Geißer-Schiermeyer 2022)
- $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)
- $P_3 + 2P_1$

(Abuadas-C.-Hoàng-Sawada 2024)

- $\overline{P_5}$ (Dhaliwal et al. 2017)
- $\overline{P_3 + P_2}$ or gem

(Cai-Goedgebeur-Huang 2023)

•
$$K_{1,3} + P_1$$
 or $\overline{K_3 + 2P_1}$

(Xia-Jooken-Goedgebeur-Huang 2024)

Theorem (C.-Hoàng 2024): There are infinitely many k-critical (P_5, C_5) -free graphs for all $k \ge 6$.

k-Colouring 000	Critical Graphs 000000	Results	Conclusion o
Recall Theorem many k-cr	(Hoàng-Moore-Recoskie-Sawada-Vatsh ritical P_5 -free graphs for a	There are ll $k \geq 5$.	infinitely

ColournedCritical Graphs
cococotoResults
cococotoConclusionRecall...Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely
many k-critical P_5 -free graphs for all $k \ge 5$.
They prove this by constructing an infinite family of k-critical
 $(2P_2, K_3 + P_1)$ -free graphs!

Figure: P_5 with an induced $2P_2$ in red.

ColumnCritical Graphs
occoolResults
occoolConclusionRecall...Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely
many k-critical P_5 -free graphs for all $k \ge 5$.
They prove this by constructing an infinite family of k-critical
 $(2P_2, K_3 + P_1)$ -free graphs!Conclusion

Figure: P_5 with an induced $2P_2$ in red.

Theorem (C.-Hoàng 2024): There are infinitely many k-critical $(2P_2, K_3 + P_1, C_5)$ -free graphs for all $k \ge 6$.

k-COLOURINGCritical GraphsResults
occoccConclusionRecall...Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely
many k-critical P_5 -free graphs for all $k \ge 5$.
They prove this by constructing an infinite family of k-critical
 $(2P_2, K_3 + P_1)$ -free graphs!Conclusion

Figure: P_5 with an induced $2P_2$ in red.

Theorem (C.-Hoàng 2024): There are infinitely many k-critical $(2P_2, K_3 + P_1, C_5)$ -free graphs for all $k \ge 6$.

Fact: Every known infinite family of k-critical P_5 -free graphs is actually $2P_2$ -free!

k-Colouring 000	Critical Graphs 000000●	Results	Conclusion o

Figure: Graphs H of order 5 where the finiteness of k-critical (P_5, H) -free graphs is unknown.

Figure: The general form of the (m, ℓ) -squid graphs for m = 3, 4.

Figure: The general form of the (m, ℓ) -squid graphs for m = 3, 4.

Colouring	Critical Graphs	Results	Conclusion
0	0000000	0●0000	o
Lemma (IW) If G is a k-cr $(P_3 + cP_1)$ -fr	OCA2024): Let $\ell, k \geq 1$ ritical $(2P_2, (4, \ell)$ -squid	1 and $c = (\ell - 1)(k$ l)-free graph, then	(-1) + 1. G is

 $\begin{array}{c|c} Column G \\ \hline Column G$

Colourned Critical Graphs Results Conclusion Conclusion Conclusion Conclusion Lemma (IWOCA2024): Let $\ell, k \ge 1$ and $c = (\ell - 1)(k - 1) + 1$. If G is a k-critical $(2P_2, (4, \ell)$ -squid)-free graph, then G is $(P_3 + cP_1)$ -free.

 $\begin{array}{c|c} Column G \\ \hline Column G$

 $\begin{array}{c|c} Column G \\ \hline critical Graphs \\ \hline column G \\ \hline co$

 $\begin{array}{c|c} Column G \\ \hline critical Graphs \\ \hline column G \\ \hline co$

 $\begin{array}{c|c} Column G \\ \hline critical Graphs \\ \hline column G \\ \hline co$

c-Colouring	Critical Graphs	Results	Conclusion
	0000000	000000	o
Theorem	(Abuadas-CHoàng-Sawada 2024):T	here are only finite	ely many

k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2, (4, \ell)\text{-}squid)\text{-}free$ graphs for all $k, \ell \geq 1$.

Figure: $(4, \ell)$ -squid contains an induced

COLOURING	Critical Graphs	Results	Conclusion
	0000000	000000	o
Theorem	(Abuadas-CHoàng-Sawada 2024):T	here are only finite	ly many

k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2, (4, \ell)\text{-}squid)\text{-}free$ graphs for all $k, \ell \geq 1$.

Figure: $(4, \ell)$ -squid contains an induced chair

c-Colouring Critical Graphs		Results 000000	Conclusion o
Theorem	(Abuadas-CHoàng-Sawada 2024):T	here are only finite	ly many

k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2, (4, \ell)\text{-}squid)\text{-}free$ graphs for all $k, \ell \geq 1$.

Figure: $(4, \ell)$ -squid contains an induced chair and $claw + P_1$.

Lemma (IWOCA2024): Let $\ell, k \geq 1$. If G is k-critical $(2P_2, (3, \ell)$ -squid)-free, then G is $(4, 2\ell - 1)$ -squid-free.

Lemma (IWOCA2024): Let $\ell, k \geq 1$. If G is k-critical $(2P_2, (3, \ell)\text{-}squid)\text{-}free$, then G is $(4, 2\ell - 1)\text{-}squid\text{-}free$.

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2,(3,\ell)\text{-}squid)$ -free graphs for all $k, \ell \geq 1$.

Corollary (IWOCA2024): There are only finitely many k-critical ($\overline{diamond + P_1}$)-free graphs for all $k \ge 1$.

COLOURING Critical Graphs		Results	Conclusion
0000000		0000€0	o
Lemma (IW $(P_3 + P_1)$ -fi	VOCA2024): Every k-criteree.	itical $(2P_2, bull)$ -fre	e graph is

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2, bull)$ -free graphs for all k.

Figure: The *bull* graph.

-Colouring	Critical Graphs	Results	$\operatorname{Conclusion}_{O}$
00	0000000	0000€0	

Lemma (IWOCA2024): Every k-critical $(2P_2, bull)$ -free graph is $(P_3 + P_1)$ -free.

Theorem (IWOCA2024): There are only finitely many k-critical $(2P_2, bull)$ -free graphs for all k.

Figure: The *bull* graph.

n	4-critical	5-critical	6-critical	7-critical
4	1	0	0	0
5	0	1	0	0
6	1	0	1	0
7	2	1	0	1
8	0	2	1	0
9	0	11	2	1
10	0	0	12	2
11	0	0	126	12
12	0	0	0	128
13	0	0	0	3806
total	4	15	142	3947

Table: Number of k-critical $(2P_2, H)$ -free graphs of order n for $k \leq 7$ where H is (4, 1)-squid or bull.

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

- $P_4 + P_1$
- chair (known k = 5)
- $\overline{\text{diamond} + P_1}$
- $C_4 + P_1$

- bull (known k = 5)
- $\overline{P_3 + 2P_1}$
- W₄

- $K_5 e$ (known $k = 5, k \ge 8$)
- K_5 (known k = 5)

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

- $P_4 + P_1$ • chair (known • k = 5) • $\overline{diamond + P_1}$ • $C_4 + P_1$ • bull (known k = 5) • $\overline{P_3 + 2P_1}$ • W_4 • $K_5 - e$ (known $k = 5, k \ge 8$) • K_5 (known k = 5)
 - THANK YOU!

